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feet" Item pool. Results showd that the hayesian adaptive test resulted Im*,
unbiased 6 estimates and relatively flat Information functions only In the
unrealistic situation in ihich an accurate prior 0 estimate us used. When a
more realistic constant prior e estimate was used with a fixed test length,
severe bias ws observed, with low 6 levels overestimated and high 6 levels
underestimated; bias decreased for high 0 levels with increased item discrial-
nation, but discrimination did not substantially affect bias for low 6 levels.
Information curves for the constant prior and fixed test length condition be-
came more peaked and asymmetric with increasing item discrimination. A dif-
ferent pattern of bias ws observed with variable test length and a constant
prior. In this case, increasing discriminations resulted in higher levels of
bias for low 6 levels and lower levels of bias for high 6 levels. Low die-
criminations resulted in a flatter Information function, with equiprecise mea-
surement decreasing with Increasing item discrimination. Also in the variable
test length condition the test length required to achieve a specified level of
the posterior variance of 6 estimates was an increasing function of 6 level,
with twice the number of items required at high 8 levels than at low 8 levels.
These results indicate that 8 estimates from Oven's ayesian adaptive testing

method are affected by the prior 8 estimate used and that the method does not
provide measurements that are unbiased and equiprecise except under the un-
realistic condition of an accurate prior 8 estimate.
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BIAS AND INFOR14ATION OF BAYESIAN ADAPTIVE TESTING

Since test scores are typically used, to- dii fereatiate Moog 9 094S, Oft
highly desirable property of a teat would be that it, memouro equally well At s.1U
points. Another consideration is that it smasure each person precisely. lbw.,
an "ideal" test would have a high,9 horizontal, inf rustiJon funct~iono. U0007w'
nately, this Ideal cannot normally be achieved in a fixed-lenth conventioa
test that drawe its Item from a such larger flixed-pool of test item. -AoriAax-
ily, some trade offs, must be ade. Relatively high information at a point can
be achieved by "peaking" the tests that is, constructing it of the most Mascrim-
meating Items In a narrow range of difficulty. A, relatively flat -but low Infor-
nat ion function can be achieved by selecting equidierlainating Items having a
wide range of Item difficulty valus. The only way to approximate a high, flat
Information function is to administer to each person the subset of Item that
provides the most Information at his/her level of ability, s. The problem with
this ts obvious: e is unknown before the test is administered.

An adaptive test can select Items during the course of testing in such a
way as to attempt to umaimise the information obtained for each examninee. This

*may be done either by simple branching-a-,dministering a more difficult item af-
ter a correct answer and an easier Item after an Incorrect anser-or by more
elaborate techniques. Owen's (1969, 1975) layesian adaptive testing strategy
estimates 8 after each Item response, theu select* the uoused test item that is,
in one sense, the meat "informative" at the current estimated ability level.
The result is that different persons take different sets of test items; each set
of test Items spans a range of difficulty levels approximately tailored to pro-
vide maximal information about the individual examinee.

The Information function of the test scores derived from any adaptive test-
Ing procedure should be (1) flatter then that of a peaked test of the aem
length and constructed from the same item pool and (2) higher than that of a
rectangular test of the sam length drawn from the sam Item pool. 1he height

* of the adaptive test's Information function will be determined In large part by
the discriminations and guessing parameters of the constituent item of the Item
pool as well as by test length. The flatness of the information curve (and to
sowe extent Its height) will depend largely on the range of Item difficulties in
the pool and on the effectiveness of the adaptive Item selection procedure*

Urry (1971) conducted monte carl* simulations of Owen's (1969, 1975) se-
quential procedure using three different simlated Item banks: twon banks of
"ideal" Item parameters and one bank of, item with the em paramters. as the
VSAT (Lord, 1968). UWry's item lank A had 20 equidiscrialustiag Item (a 40 1.6)
at each of five equally spaced levels on the ability coistimum; his Item Danik A
employed five Items of the sam (a - 1.6) diacrimInatims at each of 20 ability
levels; and Item bank C employed 'ho paramters actually occurring Is the VMAT.
lanks A and I required an average. of just over 11 itm to test -eumra stm.
lank C required an average of 17.5 itam to teomfimstevim. Teothermot'r
result of Urry's (1971) simulaties staftes aw the uqpmisda of fid~elty
cefdficients. For SIMulated 400UiMees 1 drM C46606ly 11rw 4a NDWM (00,1) pops
latloa, the observed corralattof -t 69M (Itemt lee A) a" .919 (lan eek M)
are quite high In view of the relativsl. short test lengts lunlwe.o
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Jensema (1972) simulated Oven's (1969, 1975) approach to Bayeslan testing
using the actual item responses of 100 live examinees to 58 mathematics items
drawn from four conventional pre-college tests taken at full length by the exam-
inees. From a record of their Item-by-item actual test performance, a computer
program constructed artificial protocols of their responses to the items that
would have been administered by Bayesian sequential tests under two different
conditions., with and without differential prior Information about examinees'
abilities. Parallel to these two "real data" simulations, Jensema carried out
monte carlo simulations of the Bayesian procedure. These simulations used 100
simulated examinees and items with logistic ogive paremeters identical to the 58
real items. Item scores were generated as a stochastic function of ability, 6 ,
and the parameters of each item. The adaptive tests were terminated in each
instance when the posterior variance of the Bayesian ability estimate fell below
.0625 or when 30 items had been administered, whichever occurred first.

In the real-data simulation, man test length ws about 27 items, with or
without differential initial ability estimates. The Bayesian estimates corre-
lated about .86 with scores on a weighted composite of the four conventional
tests from which the item bank was selected. Jensema did not report a correla-
tion of ability with test length or with precision of estimate, but he did ob-
serve that the posterior variance criterion terminated the testing only in the
upper portions of the distribution of estimated ability. Jensema interpreted
these results to imply that the item pool was unsatisfactory for adaptive test-
ing in the lower ability levels due to the low discriminations of the items in
that region of the difficulty continuum. His monte carlo results using the same
item pool resulted in virtually Identical mean test lengths and in correlations
of .92 between estimated ability and true ability. He concluded, in part, that
a satisfactory item pool for adaptive testing needs to employ very highly dis-
criminating Items uniformly distributed on the difficulty continuum. Another
c6nclusion he reached-this one on the basis of monte carlo simulation with Ide-
al item banks--was that for most purposes little was to be gained by the use of
prior information about examinees to determine a variable initial 0 estimate.
Jensema found that using differential prior information resulted In an average
savings of only one test item.

In another monte carlo study of Owen's Bayesian strategy, Jensema (1974)
examined the effects of item parameters and Bayesian test length on test reli-
ability. He showed that reliability is directly related to the posterior varl-
ance of the Bayesian ability estimate; hence, using a specific value of that
posterior variance as a termination criterion determines the reliability of the
test. Jensema showed that the average number of Itms required to attain that
reliability varies as a function of the item parameters. With items uniformly
distributed on difficulty, the higher the item discrimination, the shorter the
test.

McBride (1977; McBride & Weiss, 1976) also studied characteristics of the
ability estimates resulting from Oven's (1969, 1975) strategy. These monte
carlo simulations involved (1) an Ideal item pool with variable test length; (2)
the effects of guessing and Item discrimination In a perfect item pool; (3) the
effects of fixed test length; and (4) the effects of ability level and item pool
configuration. In the first three studies, the performance of the adaptive test
was evaluated on overall indices including the overall bias and mean absolute
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error of the ability estimates, the correlation of ability estimates with true
ability estimates (fidelity), and correlations of true and estimated ability
levels with errors and test length.

The fourth study evaluated the performance of this testing strategy in an
item pool with no correlation between difficulty and discrimination parameters,
and using items with high negative and high positive correlations between these
parameters. In contrast to the other studies, characteristics of the ability
estimates were examined as a function of true 0; dependent variables included
bias and information conditional on e. Contrasting with the first three stud-
ies, which showed little overall mean bias and information, Study 4 showed se-
vere bias in the conditional 8 estimates for all three item pool configurations.
Estimates of 8 were unbiased only for five 6 values between 8 - 1.0 to -1.0; for
low e values, e was overestimated and high 8 values were underestimated. In
addition, the information curves for the three item pool configurations were not
high and flat as would be expected, at least when the ideal item pool was used
in which difficulty and discrimination parameters were uncorrelated.

Gorman (1980) also examined the bias and information of scores produced by
Owen's Bayesian testing procedure. These analyses were based on two "ideal"
item pools with discriminations of a - .8 and 1.6, in which 101 item were rec-
tangularly distributed in difficulty, and both true and estimated item parame-
ters were used. Gorman also studied the effect of applying a correction for
regression (proposed by Urry, 1977) to ability estimates from Owen's testing
procedure, designed to reduce bias in the estimates. His results show substan-
tial bias in the uncorrected e estimates, with positive bias for 8 levels below
zero, negative bias for e levels above zero, and higher levels of bias for the
less discriminating items. His data also show that Urry's correction was not
entirely successful in eliminating the bias, since the corrected e estimates for
0 levels above zero resulted in positive bias. Since Gorman's study used an
ideal, but finite, item pool, however, his results may be partially item pool
dependent. In addition, Gorman's study did not attempt to determine the cause
of the bias In the e estimates but simply examined one possible approach to re-
ducing it.

Purpose

.The present study was designed to further investigate the nature of the
bias and the information characteristics of Owen's Bayesian adaptive testing
strategy and to examine possible causes of the bias. Factors investigated in-
cluded (1) the effects of item discrimination, (2) the effects of fixed vs.
variable test length, and (3) the effect of an accurate prior estimate.

Monte carlo simulation of Owen's adaptive test was used. Unlike some pre-
vious simulation studies, but similar to Studies I to 3 in Mcride (1977), the
present studies did not use a prestructured item pool. Rthe the tests wevt

simulated using a perfect and infinite item pool havig any di iculty parame
ter@ required by the item selection process, with restrictions y on the item

* . -m n eumu ail m
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discriminations and pseudo-guessing parameters, c. By thus slmulating an infI-
nite item pool, the results of the simulation studies should reveal, within the
limits of sampling error, the inherent properties of the layesian adaptive test,
unafffected by the idiosyncrasies of a typical finite item pool.

Similarly, following the procedures of Study 4 in McBride (1977) in order
to permit accurate description of the properties of the testing method as they
vary with trait level, the simulated examinees (simulees) ware not drawn random-
ly from a specified distribution; rather, a large number of examinees mre simu-
lated at each of a number of trait levels throughout the normally encountered
range.

Examinees

For the purposes of monte carlo simulation, an examinee i was characterized
by a numerical value, which is the actual trait level 6. In each of the eight
data sets generated, there more 3,100 simulees, with 100 at each of 31 e levels
equally spaced in the interval -3.0 to 3.0. This range of the trait would in-
clude 99.99% of a population normally distributed on 0, with mean 0 and variance
1.

Test Items

For each separate item administration, an item was computer generated with
the pseudo-guessing (c) parameter held constant at .20, simulating a five-alter-
native multiple-choice item. The item discrimination, a, was constant for each
data set, with a - .80, 1.60, or 2.40 betwen data sets.

Following McBride (1977) the difficulty (b) parameter for each simulated
t item administration was determined by the current e (the prior mean Ml._1 of the

estimated distribution of ei before administering the nth item) and by the con-
stant item parameters ag and b., according to the formula

__ [1+ (1 + 8c)]
g a M log 2 [11

Equation 1 gives the item difficulty value having maximal information when 9-
I~l., and ag and cg are fixed (Birnbaum, 1968, p. 464). Since, in general,e i is

unknown and the best available estimate is IMs- 1, the item difficulty chosen is

the one that is the most informative, given the current estimate of 8 at any
point in the adaptive test.

Item Responses

The dichotomous (0,1) score of any simulee on any item is a probabilistic
function of its status 0i on the trait 8, the item difficulty b., and the param-

eters ag and cg. The probability P'(81) of a correct response (ug - 1) under

the logistic model item characteristic curve is

,', c + (1-cV/1 + ex[-,.7a.(O,-b)] ). 121

8 I
. . . ... .

-Owemmtrm



In order to simulate Item reoponses,9 each ta. an. ten administration took
place the quantity P'(91 was compared with, a pseudo-random numbe ge nsrat-
ed from a dis tr ibution. uPnform :in the interval (6,11. A'score 'of ug - I wa

assigned whenever VOL) equaled or exceeded rgj; otherwise, a score of 0 was
assigned. 9g

Dependent Variables

For the simulated test of each individual L. the following were recorded:
k. the number of item administered;

Hk, the posterior mean after k item (ioe., e); and
Vk, the posterior variance after k item (i.e., the variance of 8).

These values were avgraged at each level of e across the 100 simulees at that
level, resulting in ii, the mean of the 8 estimates at each level of Oii - 1,

2, ... , 31), and a2(ei), the variance of at each 8 level. Bias ws determined

at each of the e levels by

Bias - (0ei - e [3]

Information uas computed from the formula

I8)-t2/(y2(4)

wher 0'is the first derivate of the polynomial reg ressiLon of0on8
whr i ne

Independent Variables

Eight data sets were analysed for three levels of item discrimination. The
characteristics of the three studies and the data sets are summarized in Table

Study 1: Accurate-prior 0 estimate. This study was Intended to provide
"best case" data in order to serve as a benchmark against which other studies
could be evaluated. The "best case" for the Bayesia adaptive test ought to be
one Involving a "perfect" item pool and accurate prior knowledge about examin-
eesl trait levels.. Accurate prior knowledge mans that each examinee'sa trait
level uas know beforehand and ws used as the meen of the Baye" prior diatribu-

* tiono Iader these conditions the only limitations on the Information and accu-
racy of estimate of Owes's procedure are those Imposed by the test length, and
by the discrimination*suad guessing parameters of the slaulated test itesp
Holding those variables constant, any Idiosyncrasies In the behavior of the test
scores mist be due to the trit level estimation and item difficulty sal4ction
protedure

TWo separate anI -inepOndent test admalstraton vaft 8einst forf' each
of the 3, 100 simulees IIn Data let 1, al1 Ite" dis-Wiiatiffls van ;90, iand ia
Data Set 2g a 1.60. For each simule, the Days initial prir dietdbution
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Table 1
Sumary of the Independent Variables

in the Three Studies

Termination
Prior Criterion

Study and Distribution Posterior No. of
Data Set a Mean Variance Variance Items

Study I
1 .80 ei  1 - 20
2 1.60 e t  1 - 20

Study II
3 .80 0 1 - 20
4 1.60 0 1 - 20
5 2.40 0 1 - 20

Study III
6 .80 0 1 .10 30
7 1.60 0 1 .10 30
8 2.40 0 1 .10 30

was normal, with mean 61 and variance 1.0. Thus, at the outset of testing, the

initial estimate of each simulee's trait level was accurate. The adaptive test
was allowed to run its normal course, re-estimating 61 after every item response
and selecting the next item accordingly, until 20 items had been administered.

Study II: Constant prior 8 estimate with fixed test length. Study Il rep-
licated the 20-item fixed test length and constant a values of .80 and 1.60 from
Study 1; to examinee effects with more highly discriminating item, Data Set 5
used a - 2.40 for all items, while Data Sets 3 and 4 used items with a - .80 and
1.60 as in Study I. In contrast to Study I, the three data sets of Study II used
the same initial normal prior distribution (man - 0, variance - 1.0) for all
simulees, regardless of actual trait level. In this study, then, a more typical
use of the Bayesian adaptive testing strategy was simulated, i.e., the applica-
tion to individuals for whom no prior e estimates were available prior to test-
ing; consequently, a group prior e distribution was used to select the first
item to be administered. As in Study I, a fixed-length test of 20 items was
administered to each simulee.

Study III: Constant prior 0 estimate with variable test length. In Study
III, as in Study II, the same initial normal (0,1) prior distribution was as-
sumed for all simulees. The difference between the studies was in the test ter-
mination criterion. In Study III, testing was terminated for each simulee when-
ever the posterior variance Vk fell below .10. This value corresponds to the
"standard error of estimate" criterion of .3162 specified by Urry (1974) to
achieve a fidelity coefficient exceeding .95 in a normal (0,1) population of
examinees. A maximum test length of 30 items was Imposed, so that if the poste-
rior variance criterion had not been reached within 30 items, testing was termi-
nated. As for Study II, three levels of item discrimination--a - .80, 1.60, and
2.40-were studied in Data Sets 6, 7, and 8, respectively.
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Results

Accurate Prior e Estimate

Bias of the ability estimates for the two data sets of Study I are shown in
Figure 1 (numerical values of bias and information for Data Sets 1 and 2 are in
Appendix Table A). As Figure 1 shows, there was virtually no bias in the abili-
ty estimates for Data Set 2 (a - 1.6), with a small amount of bias alternating
between positive bias and negative bias for Data Set I (a - .8). The maximum
amount of bias observed in the data was at e - +3, where mean bias was -. 10; a
similar degree of bias was observed at e - -1.8.

Figure 1
Bias as a Function of e for Data Sets I and 2

.G0

*-Data Set I (a:.8)
*-----*Data Set 2 (a:1.6)

.40

.20-

-.20 - .

-.40

I I I I ' I " ' I I I I

-3 -2 -1 0 1 23
* e

Figure 2 shows information curves for Data Sets I and 2. As the results
show, the information for Data Set I was relatively flat throughout the e range.
The maximum information was observed at 8 - -. 5, with minimum information at e -
+.2. Information ranged between 7 and 11, with only minor variations across the
ability range. The information for Data Set 2 was relatively flat, but not as
flat as that for Data Set 1. There was a spike at 8 - .8 with a secondary peak
at 8 - -2.8, and overall more variability between 8 levels than for Data Set 1.
In general, there is a slight concave trend to the information values for Data
Set 2, with the exception of the spike at 0 a .8. However, the general trend is
a relatively flat Information function for both data sets.

i'll li~~~~ I -m i l II I lnl-, ,



Figure 2
Information as a Function of 6 for Data Sets I and 2

*--*Data set 1 (az.8)
30 - *- Data Set 2 (a=I.A)

25

20

10-

5

0 F I I I I I I I I I I

-3 -2 -1 0 1 2 3

Constant Prior e Estimate with Fixed Test Length

Figure 3 shows the bias in the e estimates for the data sets of Study II at
each of the three levels of item discrimination (numerical values of bias and
information are in Appendix Table B). For all three data sets there Is a nega-
tive slope to the bias curve with low e values being overestimated and higher 8
values being underestimated. In addition, there are some substantial differ-
ences In the bias curves for the three levels of discrimination. Data Set 3 (a
= .8) achieved the highest levels of bias of all three data sets. Very severe
bias was observed for negative 8 levels and severe bias In the opposite direc-
tion for positive e levels. When item discriminations were increased In Data
Set 4, there was only a slight drop in the positive bias for low a levels and a
sore substantial drop in negative bias for the e levels above the masn. In-
creasing the item discriminations to 2.4 in Data Set 5 resulted in virtually no
change in bias for low 8 level but a further decrease in bias for the positive e
levels with the range of unbiased ability estimates varying from approximately 9



M -1 to 6 +1.5 in Data Set 5. As these results show, the effect of increasing
item discrimination is to reduce bias somewhat, primarily for high e levels*
For low e levels ( < -2.0) substantial levels of bias (.20 or more) were ob-
served for the highly discriminating items of Data Set 5.

Figure 3
Bias as a Function of e for Data Sets 3, 4, and 5

1.00 *- Data got 3 (s:=.-)
-. Data Set 4 (a= 1.6)

o-.- Data Set S (a=2.4)

.60.

.60-

.40-

.~.20-

-.20-

-. 40.

-.60-

-3 -2 -1 0 123

Figure 4 show test Information curves for the three date "eto of tedy 2.
As Figure 4 shows, with the low discriminating Itmn (a - .8) of lata Vet 3,
test Information is relatively flat for 6 levels above-about 8 - -1.S, Wit a
decrease In information below that level. A Item discriination io imeroeeed,
the results for Data Set 4 show the Information curve peaking with relatively
lower Information levels for * > 1.6 and 0 < -1.5, and a greater sayintry Is
the information curve* Finally, when the Item of Data Set 5 (a - 2.4) "tro
used, the Information curve becomie even more peaked ad more variable, with
high levels of Information generally In the range of 0 - +1 to -1, and with in-
formation dropping off extremely quickly beyond that ranges Por S levels below



-10-

Figure 4
Information as a Function of 8 for Data Sets 3, 4, and 5

*--*Data Set 3 (&=.
'-Data Set 4 (&= A.)

O'- Data Set 5 (&=2A)

45-

40-

35-

30-

0

-2 25



-1, there is little difference in information when Item discriminations are im-
creased from a - 1.6 to a - 2.4. For e levels below -1.8, levels of information
are not increased by incireasing item discriminations.,

Figure 5
Bias as a Function of 0 for Data Sets 6, 7, and 8

lAO -- oData IWO6 (&-.8)

'-Ds Set 7 (Ale)
w-Dats 0"t 6 (&=2A)
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Constant Prior 0 Eti..t. With Variable Test Length

Figure 5 shows bias functions for the three data sets of Study III (nmeri-
cal values for bias and information are in Appendix Tables C, D, and E). As the
results show, least bias for low 0 levels was observed for Data Set 6 (a- .8),
uhile the high 0 levels obtained the highest degree of bias for that data set.
As item discriminations increased, bias for low 0 levels increased, while bias
for the high 0 levels decreased. Extremely high levels of bias were observed
for Data Set 7 (a - 1.6) and Data Set 8 (a - 2.4) for 0 levels less than 0 - -2.

Figure 6 shows test information functions for the variable-length condi-
tions of Data Sets 6 through 8. The information function that most approximated
the horizontal and equiprecise ideal was achieved by Data Set 6 (a - .8), which
obtained relatively constant levels of information for e values greater than 0 ,
-1.5. As item discrimination was increased, the level of information obtained
for low 0 levels decreased, while the level of information obtained for high 0
levels remained similar. The result of increasing item discrimination was a
general increase in peakedness and asymmetry of the test information functions.

Figure 6

Information as a Function of 6 for Data Sets 6, 7, and 8

25

9--.Dsa Seto (a:g)
Da----Dta Set 7 (a:.6)

*---*Data set 8 (a:2.4)

20
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0

10

5:
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-3 - 0 36I

Figure 7 show the mean number of item administered for each of the 0 lev-
els for the data sets of Study III (numerical values are In Appendix Tables C,
D, and 2). As expected, more items were needed in Data Set 6, which had lower
item discriminations, than in Data Sets 7 and S. The results show that in Date
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Set 6, 30 item ws generally not sufficient, on the average, for the adaptive
test to achieve the specified level of posterior variance (.10) for most test
lengths. The results also show that test length required was an increasing
function of 8 for Data Sets 7 and S. While, on the average, the posterior vari-
ance termination criterion of .10 was achieved with about 8.5 Items for low 0
values In Data Set 7, twice the number of itm (17.0) were necessary to achieve
the same posterior variance termination criterion (on the average) for a - +3.
The ese trend was observed for the more highly discriminating item of Data Set
8.

Figure 7
Mean Number of Ite Administered as a Function of 0

for Date Sets 6, 7, and 8
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Discussion and Conclusions

This study used a "perfect" Item pool In order to evaluate the performance
of Oven's Sayssian adaptive testing strategy under ideal conditions.* The re-
sults show that In team of achieving statistically sabiased maesuremt ad
measuremnts of equal precision throughout the range of ability, Oes adaptive
testing strategy achievs these desirable goals only under the extremely sreal.
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istic condition of an accurate prior ability estimate. Of course, In a realis-
tic testing situation, the examinee's ability is not know beforehsad; other-
wise, testing would not be necessary. Thus, the data of Study I serve only as
an unrealistic baseline condition to dieh results of other more realistic test-
ing conditions can be compared. Even under the unrealistic conditions of Study
1, however, there was a tendency for increasing item discrimination to result In
increasing variability In levels of Information as a function of 0.

Studies I and III evaluated Oven's Bayesian testing strategy under the
more realistic testing conditions of a constant prior e estimate, with both fix-
ed and variable test length. The results of Studies 2 and 3 show that this
adaptive testing strategy does not achieve unbiased measurement or measurements
of equal precision when a constant prior 0 estimate is used for all examinees,
regardless of whether test length Is fixed or variable. The results show an
interaction of the termination criterion with the performance of the adaptive
testing strategy, both in terms of bias and information.

When a constant test length is used, increasing item discrimination results
in decreased bias, with a more substantial decrease in bias for high 8 levels.
When variable termination is used, increasing item discrimination results in
only slightly decreased bias for high 8 levels, but in increased bias for low 0
levels, with extremely high levels of bias for very low leves. In terms of
information, the flattest information curves were observed for both termination
criteria with the least discriminating items. As item discrimination was in-
creased, in both cases the information curve became more peaked and asymmetric,
with a greater degree of asymmetry observed for the variable-length testing con-
dition. Results also showed that different mean numbers of items were necessary
to achieve a fixed posterior variance termination criterion at different levels
of 8. With moderately and highly discriminating items (a - 1.6 and.a - 2.4),
twice the number of items were necessary, on the average, for high 8 levels to
reach a posterior variance termination criterion of .10 than for low 8 levels.

Because this study used a perfect item pool in which items of a specified
discrimination were available at any level of difficulty, the results observed
in these studies cannot be attributed to deficiencies in the item pool, as might
be the case for the results reported by Gorman (1980). Rather, these results
are attributable to the effect of the constant prior 0 estimate, as is shown by
the comparison of results between Studies II and III and those of Study I. Al-
though the effect of Urry's (1977) correction for regression was not explicitly
examined in these studies, it is unlikely that it would have the desired effects
under both the fixed-length and variable-length test condition, since, as indi-
cated, there was interaction of observed bias with the termination criterion.

Although a major purpose of adaptive testing is to provide messurements
with equal precision/information at all levels of the ability continuum (Vais,
1982), results of these analyses show that under the realistic conditions of a
constant prior e estimate, Owen's Bayesian adaptive testing strategy does sot
achieve this desirable goal. Since the test Information curves utillse som of
the *am data from which the bias curves were computed, the results for Inatua-
tion are In a sense a consequence of the bias In the 0 estimates. The data from
these three studies show that the bias results from use of a constant pLo I
estimate, lFurther research will be necessary to determine whether ai to wht

VWMA
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degree the use of variable prior- 8 estimates ULl WOfO the Performance Of
Oven's adaptive testing strategy in term of reducing tbe bias and, consequent-
ly, Improving the equiprecision of Its ability estimates.
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Appendix: Supplmentary Tables

Table A
han and Variance of , Bias and Infornation, as a Function of e

for the Data Sets of Study I

Data Set I Data Set 2
Innfor- SInfor-

e Mean Variance Dias nation )Man Variance Bias nation

-3.0 -3.040 .124 -.04 7.669 -3.002 .044 .00 22.253
-2.8 -2.778 .125 .02 7.656 -2.836 .037 -.04 26.509
-2.6 -2.564 .148 .04 6.504 -2.604 .046 .00 21.359
-2.4 -2.406 .102 -.01 9.489 -2.412 .047 -.01 20.939
-2.2 -2.182 .137 .02 7.101 -2.217 .045 -.02 21.905
-2.0 -1.960 .142 .04 6.834 -2.020 .052 -.02 18.985
-1.8 -1.881 .139 -.08 7.061 -1.804 .045 .00 21.972
-1.6 -1.543 .128 .06 7.698 -1.620 .048 -.02 20.629
-1.4 -1.410 .116 -.01 8.523 -1.433 .041 -.03 24.184
-1.2 -1.160 .124 .04 7.934 -1.226 .053 -.03 18.734
-1.0 -.989 .142 .01 7.003 -1.019 .043 -.02 23.121
-.8 -.870 .129 -.07 7.726 -.772 .055 .03 18.099
-.6 -.597 .111 .00 8.996 -.617 .058 -.02 17.184
-.4 -.435 .093 -.04 10.754 -.448 .048 -.05 20.788
-.2 -.208 .135 -.01 7.417 -.197 .051 .00 19.587
0.0 -.010 .110 -.01 9.027 -.052 .048 -.05 20.833
.2 .190 .168 -.01 5.966 .136 .043 -.06 23.279
.4 .379 .133 -.02 7.536 .364 .045 -.03 22.266
.6 .557 .118 -.04 8.491 .570 .045 -.03 22.287
.8 .754 .126 -.05 7.946 .801 .047 .00 21.357
1.0 1.054 .123 .05 8.130 .987 .031 -.01 32.407
1.2 1.226 .105 .03 9.509 1.166 .048 -.03 20.945
1.4 1.333 .141 -.07 7.067 1.379 .057 -.02 17.651
1.6 1.672 .121 .07 8.217 1.570 .049 -.03 20.547
1.8 1.805 .154 .01 6.438 1.796 .056 .00 17.990
2.0 2.003 .108 .00 9.884 1.972 .049 -.03 20.572
2.2 2.168 .103 -.03 9.563 2.213 .042 .01 24.013
2.4 2.353 .128 -.05 7.665 2.390 .057 -.01 17.703
2.6 2.614 .135 .01 7.237 2.585 .043 -.01 23.476
2.8 2.809 .123 .01 7.906 2.774 .050 -.03 20.198
3.0 2.891 .108 -.11 8.958 3.007 .046 .01 21.961
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Table C
Mean and Variance of 0, Bias, Information,
and Mkan and Standard Deviation of Number of

Items Administered as a Function of e
for Data Set 6

6 Infor- No. of Item
Mean Variance Bias nation Mean S.D.

-3.0 -2.422 .115 .58 3.375 28.67 1.04
2.8 -2.314 .131 .49 3.281 28.91 1.02
-2.6 -2.166 .138 .43 3.414 29.41 .85
-2.4 -2.038 .101 .36 5.064 29.67 .75
-2.2 -1.894 .109 .31 5.052 29.77 .61
-2.0 -1.707 .103 .29 5.712 29.91 .32
-1.8 -1.543 .131 .26 4.765 29.97 .22
-1.6 -1.450 .084 .15 7.833 29.97 .30
-1.4 -1.297 .073 .10 9.445 29.98 .20
-1.2 -1.076 .093 .12 7.726 30.00 0.00
-1.0 -.876 .069 .12 10.794 30.00 0.00

-. 8 -. 717 .079 .08 9.723 30.00 0.00
-. 6 -. 488 .080 .11 9.856 30.00 0.00
-. 4 -. 338 .117 .06 6.886 30.00 0.00
-. 2 -.167 .100 .03 8.195 30.00 0.00
0.0 -. 018 .091 -. 02 9.120 30.00 0.00

.2 .196 .126 .00 6.642 30.00 0.00

.4 .380 .099 -. 02 8.489 30.00 0.00

.6 .540 .086 -. 06 9.773 30.00 0.00
.8 .728 .080 -. 07 10.462 30.00 0.00

1.0 .922 .103 -. 08 8.057 30.00 0.00
1.2 1.055 .090 -. 14 9.105 30.00 0.00
1.4 1.261 .119 -. 14 6.770 30.00 0.00
1.6 1.438 .100 -. 16 7.885 30.00 0.00
1.8 1.578 .101 -. 22 7.605 30.00 0.00
2.0 1.749 .118 -. 25 6.312 30.00 0.00
2.2 1.929 .092 -. 27 7.810 30.00 0.00
2.4 2.149 .093 -. 25 7. 414 30.00 0.00
2.6 2.271 .087 -. 33 7.563 30.00 0.00
2.8 2.466 .100 -. 33 6.242 30.00 0.00
3.0 2.639 o124 -36 4.744 3000 0.00
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Table D
Mean and Variance of 0, Bias, Information,

and Mean and Standard Deviation of NUber of
Items Administered as a Function of 6

for Data Set 7

0 Infor- No. of Items
e Wan Variance Bias nation mean S. D.

-3.0 -1.742 .221 1.26 .001 8.37 .90
-2.8 -1.675 .233 1.12 .035 8.49 .85
-2.6 -1.752 .150 .85 .237 8.41 .76
-2.4 -1.762 .152 .64 .523 8.52 .82
-2.2 -1.661 .108 .54 1.263 8.65 .77
-2.0 -1.488 .205 .51 .992 8.96 .86
-1.8 -1.478 .139 .32 1.997 9.30 .91
-1.6 -1.333 .139 .29 2.565 9.45 .75
-1.4 -1.241 .110 .16 3.978 9.85 .77
-1.2 -1.108 .107 .09 4.846 10.03 .77
-1.0 -.955 .103 .04 5.801 10.15 .77
-.8 -.760 .082 .04 8.202 10,62 .81
-.6 -. 596 .085 .00 8.731 10.74 .77
-.4 -.402 .077 .00 10.451 11.16 .88
-.2 -.213 .060 -.01 14.320 11.56 .93
0.0 -.028 .099 -.03 9.135 11.81 .96
.2 .195 .071 .00 13.234 11.91 .98
.4 .354 .085 -.05 11.342 12.28 .84
.6 .459 .081 -.05 12.068 12.60 .80
.8 .762 .084 -,04 11.661 12.76 .83
1.0 .930 .110 -.07 8.820 12.91 .88
1.2 1.153 .046 -.05 20.645 12.98 .68
1.4 1.303 .071 -.10 12.934 13.36 .83
1.6 1.504 .076 -.10 11.534 13.65 .91
1.8 1.638 .078 -. 16 10.582 13.86 1.00
2.0 1.827 .101 -.17 7.580 14.47 .92
2.2 1.994 .080 -.21 8.730 14.58 .93
2.4 2.210 .089 -.19 7.024 15.13 .82
2.6 2.407 .109 -. 19 5.022 15.51 .86
2.8 2.490 .055 -.31 8.490 15.72 .65
3.0 2.675 .063 -,33 6.121 16.17 .87
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Table E
Mean and Variance of 0, Bias, Infomation,
and Mean and Standard Deviation of Nuaber of

Items Administered as a Function of 6
for Data Set 8

§ Infor- No. of Item
e Man Variance Bias mation Man S.D.

-3.0 -1.485 .216 1.51 .417 5.33 .57
-2.8 -1.473 .230 1.33 .117 5.31 .54
-2.6 -1.466 .183 1.13 .007 5.29 .55
-2.4 -1.432 .284 .97 .026 5.31 .54
-2.2 -1.528 .178 .67 .222 5.22 .50
-2.0 -1.439 .185 .56 .503 5.55 .58
-1.8 -1. 354 .193 .45 .844 5.44 .59
-1.6 -1.345 .113 .26 2.168 5.50 .56
-1.4 -1.227 .113 .17 2.964 5.67 .55
-1.2 -1.056 .108 .14 3.973 5.91 .45
-1.0 -. 886 .139 .11 3.771 6.15 .62

-. 8 -. 768 .091 .03 6.780 6.39 .69
-.6 -.615 .095 -.01 7.419 6.50 .75
-. 4 -. 409 .090 -. 01 8.725 6.95 .86
-.2 -.240 .087 -.04 9.841 7.28 .78
0.0 -.048 .078 -.05 11.742 7.43 .67

•2 .157 .084 -.04 11.463 7.61 .61
.4 .368 .079 -. 03 12.611 7.93 .65
.6 .548 .070 -.05 14.501 8.01 .68
.8 .794 .082 -. 01 12.427 8.27 .83
1.0 .956 .070 -.04 14.400 8.25 .73
1.2 1.111 .071 -. 09 13.834 8.48 .77
1.4 1.299 .071 -. 10 13.272 8.78 .88
1.6 1.519 .064 -. 08 13.892 9.23 .86
1.8 1.708 .085 -.09 9.693 9.56 .72
2.0 1.859 .100 -. 14 7.482 9.83 .72
2.2 2.099 .071 -. 10 9.353 10.26 .74

2.4 2.224 .069 -. 18 8.312 10.61 .82
2.6 2.393 .059 -. 21 8.124 11.10 .89
2.8 2.517 .060 -.28 6.404 11.44 .80
3.0 2.605 .047 -. 39 6.204 11.75 .61
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